Abstract
The effects of water density on the acid-catalytic properties of TiO2 and WO3/TiO2 catalysts in supercritical water at 400°C were investigated by using the kinetic analysis of the dehydration reaction of glycerol. The reaction selectivity of TiO2 and WO3/TiO2 catalysts and the apparent-reaction orders for water indicated that the acid-catalytic properties of these two catalysts show different dependence on water density. In the reaction using TiO2, the contribution of Lewis acid sites in TiO2 was large at a low water density, while the contribution of Brönsted acid sites in TiO2 increased with increasing water density. On the other hand, the reaction using WO3/TiO2 was mainly catalyzed by Brönsted acid sites in WO3/TiO2 even at a low water density, and the nature of Lewis/Brönsted acid sites in WO3/TiO2 was not influenced by the water density.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.