Abstract
Silver (Ag) and titanium dioxide (TiO2) nanoparticles (NPs) are released into aquatic environments through wastewater treatment plants (WWTPs). Even though these NPs are mostly retained in WWTPs, a small fraction can be found in released effluents and may exert toxic effects on aquatic biota. Currently, the available information about the sublethal effects of wastewater-borne NPs on aquatic organisms is inconclusive and the importance of exposure media remains poorly understood. Previously, we demonstrated that rainbow trout juveniles chronically exposed to wastewater-borne AgNPs or TiO2NPs caused no effects on growth, but antioxidative stress mechanisms were triggered in fish organs. Accordingly, this study aimed to: (i) assess the chronic (21-d) effects of wastewater-borne AgNPs (0.3–23.5 μg L−1 Ag) and TiO2NPs (2.7–3.9 μg L−1 Ti) on survival, growth and reproduction of Daphnia magna; (ii) determine the short-term (96-h) effects of wastewater-borne AgNPs (30.3 μg L−1 Ag) and TiO2NPs (6.3 μg L−1 Ti) at the subcellular level (biochemical markers of neurotoxicity, anaerobic metabolism and oxidative stress); and (iii) compare the effects obtained in (i) and (ii) with the corresponding ones induced by effluent-supplemented and water-dispersed NPs. Total Ag and Ti levels were analytically quantified in all treatments. It was demonstrated that both wastewater-borne NPs are considered non-toxic to daphnids at tested concentrations, considering the endpoints at the individual (survival, growth, reproduction) and subcellular (biochemical markers) levels. Contrarily, when pristine forms of NPs were supplemented to effluents or water, concentration-dependent effects were noticed, particularly on cumulative offspring of daphnids. The significant effects on anaerobic metabolism and detoxification pathways caused by the effluent indicate background toxicity. Bearing in mind the achievement of a suitable risk assessment of NPs in aquatic environments, this combined approach looking at both the individual and subcellular levels responses come up with relevant information about the ecotoxicological harmlessness of wastewater-borne NPs in complex environmental matrices like WWTP effluents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.