Abstract

The molecular mobility and crystalline texture development in highly crosslinked ultrahigh molecular weight polyethylene (HXL-UHMWPE) blended with antioxidant vitamin E (VE, dl-α-tocopherol) were studied via uniaxial compression at room temperature by means of confocal/polarized Raman spectroscopy. The results were compared to morphological analyses under the same compression conditions performed on HXL-UHMWPE prepared in exactly the same way but blending VE into the polyethylene resin (VE-free HXL-UHMWPE). These comparative analyses allow us to evaluate the physical role of VE in morphological alterations of HXL-UHMWPE induced by compression deformation, which can greatly affect its micromechanical behavior. Molecular rearrangement and phase transitions in crystalline and non-crystalline phase, i.e. amorphous and intermediate (third) phase, were found to be part of a reconstruction process after plastic deformation in the samples. Although VE-blended HXL-UHMWPE exhibited more pronounced molecular mobility, as evidenced by its significant deformation-induced texturing, crystallinity change was totally inhibited by the presence of VE during deformation. On the other hand, amorphous-to-intermediate phase transition was confirmed. VE-free HXL-UHMWPE also presented significant crystallization after deformation, but its surface texture evolution occurred to a much lesser extent. This study suggests that the addition of VE induced earlier activation of compression deformation modes in crystalline and non-crystalline phases (e.g. chain slip, interlamellar shear and rotation) due to an increase in polyethylene chain mobility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.