Abstract

BackgroundThe purpose of this study was to evaluate orthodontic debonding methods by comparing the surface roughness and enamel morphology of teeth after applying two different debonding methods and three different polishing techniques.MethodsForty eight human maxillary premolars, extracted for orthodontic reasons, were randomly divided into three groups. Brackets were bonded to teeth with RMGIC (Fuji Ortho LC, GC, Tokyo, Japan) (two groups, n = 18 each) after acid etching (30s), light cured for 40 s, exposed to thermocycling, then underwent 2 different bracket debonding methods: debonding pliers (Shinye, Hangzhou, China) or enamel chisel (Jinzhong, Shanghai, China); the third group (n = 12) comprised of untreated controls, with normal enamel surface roughness. In each debonded group, three cleanup techniques (n = 6 each) were tested, including (I) diamond bur (TC11EF, MANI, Tochigi, Japan) and One-Gloss (Midi, Shofu, Kyoto, Japan), (II) a Super-Snap disk (Shofu, Kyoto, Japan), and (III) One-Gloss polisher. The debonding methods were compared using the modified adhesive remnant index (ARI, 1–5). Cleanup efficiencies were assessed by recording operating times. Enamel surfaces were qualitatively and quantitatively evaluated with scanning electron microscopy (SEM) and surface roughness tester, respectively. Two surface roughness variables were evaluated: Ra (average roughness) and Rz (10-point height of irregularities).ResultsThe ARI scores of debonded teeth were similar with debonding pliers and enamel chisel (Chi-square = 2.19, P > 0.05). There were significant differences between mean operating time in each group (F = 52.615, P < 0.01). The diamond bur + One-Gloss took the shortest operating time (37.92 ± 3.82 s), followed by the Super-Snap disk (56.67 ± 7.52 s), and the One-Gloss polisher (63.50 ± 6.99 s). SEM appearance provided by the One-Gloss polisher was the closest to the intact enamel surface, and surface roughness (Ra: 0.082 ± 0.046 μm; Rz: 0.499 ± 0.200 μm) was closest to the original enamel (Ra: 0.073 ± 0.048 μm; Rz: 0.438 ± 0.213 μm); the next best was the Super-Snap disk (Ra: 0.141 ± 0.073 μm; Rz: 1.156 ± 0.755 μm); then, the diamond bur + One-Gloss (Ra: 0.443 ± 0.172 μm; Rz: 2.202 ± 0.791 μm).ConclusionsDebonding pliers were safer than enamel chisels for removing brackets. Cleanup with One-Gloss polisher provided enamel surfaces closest to the intact enamel, but took more time, and Super-Snap disks provided acceptable enamel surfaces and efficiencies. The diamond bur was not suitable for removing adhesive remnant.

Highlights

  • The purpose of this study was to evaluate orthodontic debonding methods by comparing the surface roughness and enamel morphology of teeth after applying two different debonding methods and three different polishing techniques

  • Comparisons test (Table 5) showed that the Average roughness (Ra) and 10-point height of irregularities (Rz) values for the diamond bur + One-Gloss method were significantly higher (P < 0.01) than those found with the other methods

  • The adhesive remnant index (ARI) scores were broadly similar for the two debonding methods tested; both methods showed high frequencies of scores in the 3 to 5 range, which suggested that debonding with either the debonding pliers or the enamel chisel caused the bond to fail at the bracketadhesive interface or within the adhesive

Read more

Summary

Introduction

The purpose of this study was to evaluate orthodontic debonding methods by comparing the surface roughness and enamel morphology of teeth after applying two different debonding methods and three different polishing techniques. The debonding procedure would lead to restitution of the tooth enamel, or at least, the enamel surface could be restored, as closely as possible, to its original state [3, 4]. When the bracket debonding process is inadequate, the enamel is injured, which results cracks and fractures in the enamel surface. This condition leads tooth sensitivity, and it increases the risk of caries and pulp inflammation [5, 6]. It is important to evaluate an appropriate debonding process for removing brackets used in orthodontic practice. Restoration of the enamel after orthodontic treatment includes two major steps: debonding and enamel surface polishing

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.