Abstract

Soil cadmium (Cd) contamination resulting from anthropogenic activity poses severe threats to food safety and human health. In this study, a pot experiment was performed to evaluate the possibility of using urease-producing bacterium UR21 and eggshell (ES) waste for improving the physiological characteristics and reducing Cd accumulation of pakchoi (Brassica chinensis L.) plants. UR21 has siderophore and IAA production ability. The application of UR21 and ES individually or in combination could improve the root and shoot length, and fresh and dry weight of pakchoi plants under Cd stress. In Cd + ES + UR21-treated plants, the dry weight of shoot and root were increased by 61.54% and 72.73%, respectively. The chlorophyll a, chlorophyll b, and carotenoid content were increased by 52.19%, 42.95%, and 95.56% in Cd + ES + UR21-treated plants. Meanwhile, the H2O2 and MDA content were decreased while the SOD and POD activity were increased, and an increase of soluble protein level in pakchoi plants was observed under Cd + ES + UR21 treatment. Importantly, eggshell and UR21 alone or in combination induced a decline of Cd content in pakchoi plants, especially that Cd + ES + UR21 treatment decreased Cd content in shoot and root by 26.96% and 42.91%, respectively. Meanwhile, the soil urease and sucrase activities were enhanced. Generally, the combined application of ureolytic bacteria UR21 and eggshell exhibited better effects than applied them individually in terms of alleviating Cd toxicity in pakchoi plants. Our findings may give a unique perspective for an eco-friendly and sustainable strategy to remediate heavy metal-polluted soils.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.