Abstract

LiNi0.5Mn1.5O4 (LMNO) has attracted considerable attention as a Li-ion battery cathode material, owing to its high discharge voltage of 4.7 V (vs. Li/Li+) and high energy density. However, the electronic conductivity of LMNO is low, resulting in a low discharge capacity at high current density. To overcome this limitation, we deposited Au nanoparticles (NPs), which have a high conductivity and chemical stability at high battery voltages, on carbon-coated LMNO (LMNO/C) using ultrasound irradiation. Consequently, Au NPs that are ∼16 nm in size were deposited on LMNO/C, and ultrasound irradiation was reported to disperse the NPs on LMNO/C more effectively than stirring. Furthermore, the deposition of Au NPs on LMNO/C using ultrasound irradiation improved its electronic conductivity, which is related to an increase in the discharge capacity due to the reduction of Ni4+ to Ni2+ in LMNO/C at a high current density.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.