Abstract

Azeotropic and extractive distillation techniques used to separate azeotropic mixtures are among the most challenging separation processes in the chemical industry. In this work, an innovative distillation technique which employed ultrasonic waves was proposed to intensify the conventional multi-column azeotropic distillation method into a single-column alternative. The effects of ultrasonic intensity on the vapor-liquid equilibrium (VLE) of methyl-tert-butyl-ether (MTBE)-methanol was investigated at 50, 100, 200, and 250 W/A·cm2 and at a fixed frequency of 40 kHz. Studies were also done to examine the effects of ultrasonic frequency on the VLE data at 25 and 68 kHz frequencies. It was found that ultrasonic waves at 50 W/A·cm2 intensity and 25 kHz frequency gave the highest relative volatility (α) at 2.654 and completely eliminated the MTBE-methanol azeotrope, thereby allowing highly pure MTBE to be recovered in just a single distillation column. The results revealed that ultrasonic waves had the potential to favorably manipulate α, and hence, the VLE of an azeotropic mixture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.