Abstract

Background: Osteoporosis is a condition associated with a greater incidence of fractures, and one of the main health-related concerns in postmenopausal women. To counteract possible reductions in bone properties, physical exercise has been proposed as an effective strategy. Particularly, training interventions with a high osteogenic potential are recommended.Purpose: To analyze the effect of 24 weeks of whole-body vibration and multi-component training on lumbar spine and femoral neck bone mass, and to determine what type of training produces greater adaptations in postmenopausal women.Methods: A total of 38 women completed the study (Clinical Gov database ID: NCT01966562). Participants were randomly assigned to one of the study groups: whole-body vibration group (WBVG), multi-component training group (MTG), or control group (CG). The experimental groups performed a progressive 24-week training (3 sessions/week) program. Bone mineral density (BMD) and bone mineral content (BMC) at the lumbar spine and femoral neck were assessed by Dual-energy X-ray absorptiometry.Results: Significantly and clinically relevant increases in lumbar spine bone mass (BMD: F = 3.29; p = 0.03; +5.15%; BMC: F = 2.90; p = 0.05; +10.58%) were observed in WBVG. MTG showed clinically important pre-post-changes on lumbar spine BMC (+7.78%), although there was no statistical significance (F = 1.97; p = 0.14). At the femoral neck, no statistically significant increases on bone mass were obtained in either training group. No changes were obtained in any variable in the CG. Additionally, no statistically significant differences were found between groups.Conclusion: The results indicated that 24 weeks of supervised WBV and MT may counteract the rapid loss of bone mass after the cessation of menstruation, thus improving postmenopausal women bone health. However, in the absence of statistically significant differences between groups, it is not possible to determine which training protocol produces greater adaptations.Clinical Trial Registration: www.ClinicalTrialsgov, identifier: NCT01966562.

Highlights

  • With the global population life expectancy increasing over the years, a higher prevalence of chronic diseases in the elderly has been observed (United Nations, 2013)

  • Participants were matched by bone mineral density (BMD) and were randomly assigned to one of three groups: Whole-body vibration group (WBVG) (n = 25), Multi-component training group (MTG) (n = 25), and control group (CG) (n = 15)

  • Regarding the compliance level of the intervention, participants who were included in the final analysis attended the 96.5% of the total number of training sessions (WBVG = 97.2% and MTG = 95.8%)

Read more

Summary

Introduction

With the global population life expectancy increasing over the years, a higher prevalence of chronic diseases in the elderly has been observed (United Nations, 2013). Illnesses like osteoporosis, which are associated with greater incidence of fractures, are one of the main health-related concerns that can result in important health problems (Kanis et al, 2008). The estimated number of osteoporotic fractures is approximately 9.0 million worldwide per year, of which 61% are women (Johnell and Kanis, 2006). Hip fracture is an important consequence of low bone mineral density (BMD) and leads to a larger physical incapacity compared with all other types of fracture (Cummings and Melton, 2002), with an estimated incidence of 2.6 million by the 2025 (Gullberg et al, 1997). Osteoporosis is a condition associated with a greater incidence of fractures, and one of the main health-related concerns in postmenopausal women. Purpose: To analyze the effect of 24 weeks of whole-body vibration and multicomponent training on lumbar spine and femoral neck bone mass, and to determine what type of training produces greater adaptations in postmenopausal women

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.