Abstract

The performance of the standard k-ɛ model, the high-Reynolds-number k-ω model, the 1-equation k model, and the non-friction Euler model is examined against the case of wave run-up on a mild slope. A numerical model based on N-S equations and Volume Of Fluids (VOF) method is employed. Comparisons of elevation, velocity and shear stress are made among the four turbulence models against experimental data of wave run-up on a mild slope beach. It is found that before wave breaking on the slope, the outputs of the four different turbulence models agree reasonably well with each other. This suggests that during the run-up process the turbulence effect is negligible before wave breaking. Moreover, in the wave breaking zone, both the standard k-ɛ model and the high-Reynolds-number k-ω model predict the mean velocity field quite well, but generally under-predict the velocity and turbulent kinetic energy using wall functions on the solid slope surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.