Abstract
The aryl hydrocarbon receptor (AhR) mediates adverse effects of dioxins, but its physiological role remains ambiguous. The similarity between AhR and canonical circadian clock genes suggests potential involvement of AhR in regulation of circadian timing. Photoproducts of tryptophan (TRP), including 6-formylindolo[3,2-b]carbazole (FICZ), have high affinity for AhR and are postulated as endogenous ligands. Although TRP photoproducts activate AhR signaling in vitro, their effects in vivo have not been investigated in mammals. Because TRP photoproducts may act as transducers of light, we examined their effects on the circadian clock. Intraperitoneal injection of TRP photoproducts or FICZ to C57BL/6J mice dose dependently induced AhR downstream targets, cytochrome P4501A1 (CYP1A1) and cytochrome P4501B1 mRNA expression, in liver. c-fos mRNA, a commonly used marker for light responses, was also induced with FICZ, and all responses were AhR dependent. A rat-immortalized suprachiasmatic nucleus (SCN) cell line, SCN 2.2, was used to examine the direct effect of TRP photoproducts on the molecular clock. Both TRP photoproducts and FICZ-increased CYP1A1 expression and prolonged FICZ incubation altered the circadian expression of clock genes (Per1, Cry1, and Cry2) in SCN 2.2 cells. Furthermore, FICZ inhibited glutamate-induced phase shifting of the mouse SCN electrical activity rhythm. Circadian light entrainment is critical for adjustment of the endogenous rhythm to environmental light cycle. Our results reveal a potential for TRP photoproducts to modulate light-dependent regulation of circadian rhythm through triggering of AhR signaling. This may lead to further understanding of toxicity of dioxins and the role of AhR in circadian rhythmicity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.