Abstract

Background: The aims of this study were to evaluate the effects of correcting lower limb alignment by total knee arthroplasty (TKA) on the spinopelvic alignment and to identify patients with difference in the knee joint between clinically measured passive motion and the actual standing posture. Methods: In this retrospective study, 101 patients who underwent TKA and whose serial whole-body EOS X-ray were available were included. The relationship of the knee and spinopelvic alignment was analyzed by evaluating the parameters of standing anterior-posterior and lateral whole-body EOS X-ray. The differences between postoperative passive motion and weight-bearing posture in the knee joint were assessed in both coronal and sagittal planes. Furthermore, the causes of such differences were analyzed. Results: Significant correlations between Δpelvic obliquity and coronal ΔHip-Knee-Ankle (HKA)Rt-Lt angle between the preoperative and 3-month and 1-year postoperative data (p < 0.001 and p < 0.005, respectively) and improved with coronal lower limb alignment close to neutral resulted in decreased pelvic obliquity (p < 0.001, ß = 0.085 and p = 0.005, ß = 0.065, respectively) were observed. The correlations between Δpelvic tilt (PT) and Δsacral slope (SS) and sagittal ΔHKARt-Lt angle were statistically significant (PT: p < 0.001 and p < 0.045; SS: p = 0.002 and p < 0.001, respectively). The improved sagittal alignment close to neutral resulted in decreased PT and increased SS. The difference between postoperative passive motion and the weight-bearing posture of the knee joint was correlated with lumbar lordosis and sagittal C7 plumb line-sacrum distance (p = 0.042 and p < 0.001, respectively). Conclusions: The correction of lower limb alignment with TKA affected pelvic parameters dominantly; however, there was little effect on the spinal alignment. Additionally, patients with anterior stooping or lumbar flat back demonstrated difference in extension between passive knee motion and standing. Therefore, rather than only focusing on changes in the knee alignment correction, knee surgeons should also evaluate the spinopelvic alignment before surgery to consider the prognosis of the standing and predict the possible changes in the whole-body alignment. This preoperative assessment may improve the prognosis of TKA.

Highlights

  • The aims of this study were to evaluate the effects of correcting lower limb alignment by total knee arthroplasty (TKA) on the spinopelvic alignment and to identify patients with difference in the knee joint between clinically measured passive motion and the actual standing posture

  • Reduction of lumbar lordosis (LL) initially reduces thoracic kyphosis; subsequently, compensatory changes occur in the adjacent peripheral joints to prevent stooping forward and minimize energy consumption in maintaining the line of gravity in the center while standing, resulting in increased pelvic tilt and knee flexion [9,10,11]

  • The differences between postoperative passive motion and weight-bearing posture in the knee joint were assessed using the differences between the range of motion and genu varum (GV) assessment using a joint angle indicator in the clinic and real measurements on standing AP and lateral EOS images

Read more

Summary

Introduction

The aims of this study were to evaluate the effects of correcting lower limb alignment by total knee arthroplasty (TKA) on the spinopelvic alignment and to identify patients with difference in the knee joint between clinically measured passive motion and the actual standing posture. The relationship of the knee and spinopelvic alignment was analyzed by evaluating the parameters of standing anterior-posterior and lateral whole-body EOS X-ray. The spinopelvic alignment can affâect the limb alignment and vice versa [5,6] This may be related to the compensatory mechanisms that help in maintaining the balance of the whole body. Reduction of lumbar lordosis (LL) initially reduces thoracic kyphosis; subsequently, compensatory changes occur in the adjacent peripheral joints to prevent stooping forward and minimize energy consumption in maintaining the line of gravity in the center while standing, resulting in increased pelvic tilt and knee flexion [9,10,11]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.