Abstract

Carbon(C)/copper(Cu)-based materials with high thermal conductivity and good stability at high temperatures were developed by adding a small amount of titanium, which has a low enthalpy of alloy formation with C and Cu. The isotropic fine-grained nuclear grade graphite and felt type C/C composite, which were impregnated by Cu and titanium, provided 1.3 times higher thermal conductivity at 1200 K than the original carbon materials. Microstructural analysis showed that the increase of thermal conductivity is due to the formation of titanium compounds at the C/Cu interface. These carbon-based materials could be a candidate material for the plasma facing components of fusion devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.