Abstract

ABSTRACT In this paper, TiO2 decorated reduced graphene oxide nanocomposite (TiO2@RGO), synthesized with the help of 3-Triethoxysilylpropylamine (APTES), was utilized to reinforce polyimide (PI), and the mechanical and tribological properties of this hybrid reinforced nanocomposite were investigated. Compared with RGO, TiO2, and TiO2/RGO mixture added to PI, TiO2@RGO showed synergistic effect and significant enhancement of the compress performance and wear resistance of PI composites. The compressive strength and modulus are increased by about 31% and 43%, respectively, compared to pure PI. Under high-load 300 N, the wear rate of TiO2@RGO reinforced PI composite decreased to one-tenth of that of pure PI, and was also much lower than other comparatively studied filler reinforced PI composites. In the analysis of the mechanical and friction mechanism, the excellent mechanical and tribological properties of TiO2@RGO/PI composite are attributed to the ‘ball-on-plane’ structure of TiO2@RGO composite and the chemical bonds between RGO and TiO2, which are assumed to stop crack propagation in the friction and lead to the wear reduction of PI composite. The outstanding mechanical and tribological properties of TiO2@RGO/PI composite show its promising potential of application as the tribological film that high wear resistance is required under heavy load.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.