Abstract

We investigated the effect of device thickness on the internal quantum efficiency (IQE) of thin-film GaN light-emitting diodes (LEDs), which were grown on Si substrates and transferred to other Si substrates with reduced film thickness. It was confirmed by Raman spectroscopy and photoluminescence measurement that the compressive strain is released and the quantum-confined Stark effect (QCSE) is suppressed after reducing the thickness. The best IQE of 62.9% was reached with a large suppression of the band tilting by QCSE, from 7.9 meV in the original structure to 2.4 meV in the thinnest sample, and this value can compete with that of GaN-based LEDs grown on a sapphire substrate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.