Abstract

ABSTRACTA monolithic fuel design based on U–Mo alloy has been selected as the fuel type for conversion of United States’ high-performance research reactors (USHPRRs) from highly enriched uranium (HEU) to low-enriched uranium (LEU). In this fuel design, a thin layer of zirconium is used to eliminate the direct interaction between the U–Mo fuel meat and the aluminum-alloy cladding during irradiation. The co-rolling process used to bond the Zr barrier layer to the U–Mo foil during fabrication alters the microstructure of both the U–10Mo fuel meat and the U–Mo/Zr interface. This work studied the effects of post-rolling annealing treatment on the microstructure of the co-rolled U–Mo fuel meat and the U–Mo/Zr interaction layer. The U–Mo/Zr interaction-layer thickness increased with the annealing temperature with an Arrhenius constant for growth of 184kJ/mole, consistent with a previous diffusion-couple study. The phases in the U–Mo/Zr interaction layer produced by co-rolling, however, differ from those reported in the previous diffusion-couple study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.