Abstract

The paper investigates the effect of the shapes of membership functions on a fuzzy inference system to detect a signal in a noisy waveform. The detector, which uses values of features derived from the waveform, can classify the waveform as signal or noise, or it can be uncertain, that is, it can decide that no conclusion regarding presence or absence of a signal can be drawn. Piecewise linear membership functions were used, and analytical expressions for the dependence of classification on the membership function parameters were obtained. These results were verified in a simulation, using sensory evoked potential signals and simulated noise. The performance of the system was compared to a Bayesian maximum likelihood detector. By varying membership function parameters, the fuzzy detector can be made comparable to the Bayesian detector or it can almost completely eliminate errors, at the cost of a large number of uncertain classifications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.