Abstract

The present work shows that some mechanical properties of Cr2C3-25NiCr coatings processed by HVOF thermal spraying such as elastic modulus, hardness, fracture toughness, and wear resistance are closely linked to selected processing parameters as well as to chemistry, structure, and morphology of the feedstock material. Optimization of processing parameters was based on oxygen concentration measurements inside the flame, studied by a contour plot, and curvature data recorded during spraying. The increase in velocity of in-flight particles strongly affected the interfacial fracture toughness of the coatings, as a maximum KIC of 3.71 MPa m 1/2 was reached when particle velocity increased to ~765 m/s. The micro-hardness of Cr2C3-25NiCr coatings was widely varied by changing the HVOF spray conditions, i.e., the amount of reinforcing phases and inter-splat adhesion were quite sensitive to any modification of the processing parameters. It was also found that coatings having a high inter-splat adhesion and/or low degradation of reinforcing hard phases showed reduced weight loss during erosive wear tests. Finally, from the experimental evidence reported in this work, a correlation between the elastic bending modulus of coatings and indentation crack length was also found.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.