Abstract
We report the fabrication and characteristics of ZnO thin-film transistors (TFTs) having different channel thicknesses. The ZnO films were deposited as active channel layers on SiO2/p-Si substrates by rf magnetron sputtering at room temperature. Effects of the channel thickness on the structural and electrical properties of ZnO TFTs using a bottom-gate configuration were investigated. The crystalline quality and channel conductance of the ZnO films were enhanced as the channel thickness increased. The ZnO TFT with the optimized channel thickness exhibited enhancement mode characteristics with the threshold voltage of 9.9 V, the on-to-off current ratio of ∼105 and the field-effect mobility of 0.1 cm2 V−1 s−1. This research implies that ZnO TFTs produced by a simple and low-cost technique could be applicable to electronic devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.