Abstract

ABSTRACT This paper presents a joint experimental and computational study of the effect of the bluff-body diameter on the flow field and residence time distribution (RTD) in a set of turbulent non-premixed ethylene/nitrogen flames with a high soot load. A novel optical design has been developed to undertake the PIV measurements successfully in highly-sooting turbulent flames, using polarizing filters. The mean velocity components and turbulent intensity are reported for three bluff-body burners with different bluff-body diameters (38, 50, and 64 mm), but which are otherwise identical in all other dimensions. The central jet diameter of 4.6 mm was supplied with a mixture of ethylene and nitrogen (4:1, by volume) to achieve a bulk Reynolds number of 15,000 for the reacting cases. Isothermal cases were also investigated to isolate the effect of heat release on the flow fiel. Pure nitrogen was utilized in the isothermal cases where the Reynolds number was kept the same as the reacting cases. The annular bulk velocity of the co-flowing air was kept constant at 20 m/s for all experiments. Computationally, a 2-D RANS model was developed, validated against the experimental data and was mainly used to investigate the effect of the bluff body diameter on the residence time in the recirculation zone. The flow structure for both isothermal and reacting cases was found to be consistent with the literature, exhibiting similar vortical structures of the recirculating zone and mixture fraction distribution, for similar momentum flux ratios. The flame length and volume were found to decrease by 20% and 9%, respectively, as the bluff diameter was increased from 38mm to 64mm. The length of the recirculation zone for the isothermal cases was found to be ~1.2DBB, while for the reacting cases it was ~1.5–1.75DBB. A stochastic tracking model was employed to estimate the pseudo-particles’ residence time distribution in the recirculation region. The model revealed that an increase in the bluff body diameter from 38mm to 64 mm leads to tripling of the mean residence time within the recirculation zone. Thermal radiation measurements from the recirculation zone show a 35% increase as the bluff body diameter is increased from 38 mm to 64 mm, whilst the total radiation from the whole flame drops by 15%, which is deduced to be due mostly to the decrease in flame volume. The effect of these differences on soot propensity and transport are described briefly and will be the subject of future investigations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.