Abstract

The anisotropy of the slip length and its effect on the skin-friction drag are numerically investigated for a turbulent channel flow with an idealized superhydrophobic surface having an air layer, where the idealized air–water interface is flat and does not contain the surface-tension effect. Inside the air layer, both the shear-driven flow and recirculating flow with zero net mass flow rate are considered. With increasing air-layer thickness, the slip length, slip velocity and percentage of drag reduction increase. It is shown that the slip length is independent of the water flow and depends only on the air-layer geometry. The amount of drag reduction obtained is in between those by the empirical formulae from the streamwise slip only and isotropic slip, indicating that the present air–water interface generates an anisotropic slip, and the streamwise slip length ($b_{x}$) is larger than the spanwise one ($b_{z}$). From the joint probability density function of the slip velocities and velocity gradients at the interface, we confirm the anisotropy of the slip lengths and obtain their relative magnitude ($b_{x}/b_{z}=4$) for the present idealized superhydrophobic surface. It is also shown that the Navier slip model is valid only in the mean sense, and it is generally not applicable to fluctuating quantities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.