Abstract

ABSTRACTThe effects of specific mechanical energy (SME) and dough temperature at the end of mixing (Tf) on semisweet biscuit dough characteristics and biscuit quality were studied using an experimental mixer fitted with monitoring devices. The fluid circulating in the double jacket of the mixing bowl was regulated at variable temperatures and mixed dough samples were prepared at Tf of 23, 30, and 37°C for three levels of SME input (20, 60 and 120 kJ/kg). Correlation analysis showed that semisweet biscuit length and thickness were independent quality parameters, influenced respectively by the Tf of dough and SME. Biscuit thickness and volume increased with SME input, but SME had no significant influence on the physicochemical characteristics of the dough. Biscuit length was related to the density and stickiness of the dough and to rheological behavior as assessed by fundamental and empirical measurements. A rise in dough temperature >35°C induced a dramatic increase in viscoelastic properties, leading to biscuit shrinkage. The increase of dough density with Tf seemed to be related to the melting of solid fat in the dough recipe. Melting of fat during mixing could also be a source of viscoelastic changes in the dough at Tf.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.