Abstract

The risk of oxidative stress-related metabolic diseases increases with menopause and physical inactivity. We hypothesized that an 8-week Tai Chi (TC) training program (2 sessions in class; 2 sessions at home; 1-1:15/session) would improve antioxidant capacity and reduce cardiovascular risks in both pre- (n = 8) and postmenopausal (n = 7) sedentary women. Selected measures of physical fitness and blood parameters were analyzed before and after the program. Besides the well-known effects of TC on balance, flexibility, and maximum leg extensor strength, TC (1) increased erythrocyte glutathione peroxidase activity—an aerobic training-responsive antioxidant enzyme—and plasma total antioxidant status and (2) decreased plasma total homocysteine, a cardiovascular risk marker. In addition to being a low-velocity, low-impact, and relatively safe, TC is a suitable physical activity design for pre- and postmenopausal women to increase antioxidant defenses. Investigating breathing effects during TC movements would be an interesting area for further research in diseases prevention.

Highlights

  • The risk of oxidative stress-related metabolic diseases increases with menopause and physical inactivity [1, 2]

  • Investigating breathing effects during Tai Chi (TC) movements would be an interesting area for further research in diseases prevention

  • No difference was found between pre-M and post-M women regarding other selected physical fitness parameters (Table 1)

Read more

Summary

Introduction

The risk of oxidative stress-related metabolic diseases increases with menopause and physical inactivity [1, 2]. Regular strength training can counteract, at least partly, this aging effect, improving functional ability and reducing the risk of fall [4] It has little effect on cardiovascular risk [5] and antioxidant defense markers, which are elicited mostly by metabolic changes, induced by aerobic physical activity [6, 7]. Some clinical markers, such as oxidative stress markers, are associated with lung capacity that is inversely related to the increasing risk of metabolic diseases during menopause [8]. With aging exercise tasks are performed at a higher percentage of maximal aerobic capacity (V O2 max), shifting substrate use from lipid-derived energy to carbohydrate

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.