Abstract

Humans are able to recognize objects when surface details, such as colour, texture and luminance gradients, are not available. By systematically eliminating colour, texture, shading, contrast and inner contours from given objects, we tested whether certain shape-selective inferior temporal cortex (IT) neurons of awake rhesus monkeys remain selective for these objects as the surface information is reduced. In psychophysical experiments, we established that the rhesus monkey can identify the shape of a coloured object largely independently of its surface characteristics and, to a lesser degree, of its inner contours. Shape selectivity of the neurons does not change when texture and shading are concealed. The responsiveness of the neurons is also affected by the removal of these surface attributes. The IT neurons were found to respond highly similarly to objects brighter or darker than their background. Selectivity for shape is preserved when the contrast is reversed. Deletion of the inner contours, outlining the main parts of the objects, did not affect the responses and selectivity of the IT neurons. These findings indicate that the IT can contribute to the invariant perception of objects having different surface details.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.