Abstract
This study investigated the surface characteristics and concrete alkalinity on the deterioration of basalt fiber reinforced polymer (BFRP) bars and the interface between BFRP bars and seawater sea-sand concrete (SSC) in a seawater environment. The degradation of BFRP bars with three surface characteristics (sand coating, helically-wound, and helically-wrapped) embedded in two alkalinities of SSCs and BFRP-SSC interface were studied by shear, tensile, and pull-out tests, respectively. Additionally, the microstructure of the BFRP and BFRP-SSC interface was characterized by Fourier transforms infrared spectroscopy (FTIR), X-ray computed tomography (X-CT), and scanning electron microscope (SEM). The experimental results showed that sand-coated BFRP bars exhibit the best durability performance among the three types of BFRP bars due to forming a protective layer of sand and the helically-wound BFRP bars degrade from the groove (rich fiber and less resin protection zone). The degradation of BFRP bars in low alkalinity (LA) SSC is significantly mitigated owing to the reduced alkalinity. Furthermore, the hindering effect of the sand layer also enhances the bond durability between bars and SSCs compared with the other two types of BFRP bars. The bond strength between BFRP bars and LA-SSC is slightly reduced after 180 days of seawater immersion, while that in ordinary (O) SSC decreases significantly. The pull-out failure of sand-coated BFRP bars in LA-SSC is wearing out of the sand layer and surface resin after environmental conditions, while that of helically-wound BFRP bars in LA-SSC are peeling off ribs. The research outcomes can serve as solid base for employing BFRP bars in the marine environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.