Abstract

We have studied the effects of the sulfhydryl reagents on contractile responses, using either electrically stimulated single muscle fibers or short muscle fibers that were voltage-clamped with a two-microelectrode voltage-clamp technique that allows the fiber tension in response to membrane depolarization to be recorded. The sulfhydryl inhibitors para-chloromercuribenzoic acid (PCMB) and parahydroximercuriphenyl sulfonic acid (PHMPS), at concentrations from 0.5 to 2 mM, cause loss of the contractile ability; however, before this effect is completed, they change the fiber contractile behavior in a complex way. After relatively short exposure to the compounds, < 20 min, before the fibers lose their contractile capacity, secondary tension responses may appear after electrically elicited twitches or tetani. After losing their ability to contract in response to electrical stimulation, the fibers maintain their capacity to develop caffeine contractures, even after prolonged periods (120 min) of exposure to PHMPS. In fibers under voltage-clamp conditions, contractility is also lost; however, before this happens, long-lasting (i.e., minutes) episodes of spontaneous contractile activity may occur with the membrane polarized at -100 mV. After more prolonged exposure (> 30 min), the responses to membrane depolarization are reduced and eventually disappear. The agent DTT at a concentration of 2 mM appears to protect the fibers from the effects of PCMB and PHMPS. Furthermore, after loss of the contractile responses by the action of PCMB or PHMPS, addition of 2 mM DTT causes recovery of tension development capacity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.