Abstract

Laser metal deposition shaping (LMDS) is a state-of-the-art technology that combines rapid prototyping and laser processing. There are many factors affecting the quality, precision, microstructure and performance of the LMDS-deposited parts. Among these factors, substrate preheating is a significant one because it can change the heat history of the LMDS process. Preheating is generally adopted to reduce the residual stresses and the risk of thermal distortion and cracking. However, it changes the heat transfer conditions and affects the final microstructure and properties. In this work a numerical simulation model was established to analyze the heat transfer characteristics between deposited material and substrate, the influence rules of substrate preheating on the thermal behavior during LMDS, and the distribution characters of temperature and stress field. And then, the experimental methods were used to evaluate the effects of substrate preheating on the surface quality, microstructure, composition, hardness distribution, and mechanical properties of as-built thin-wall parts. The experimental results primarily agree with the theoretical analysis and numerical model, which indicates that in terms of the varied thermo-mechanical coupled field, the investigated microstructure and properties of formed components depend considerably on the initial temperature of the substrate, so the LMDS process can be effectively adjusted and controlled by means of substrate preheating.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.