Abstract

Alzheimer’s disease (AD), an irreversible progressive neurodegenerative disease, causes characteristic cognitive impairment, and no curative treatments are currently available. Stem cell transplantation offers a powerful tool for the treatment of AD. We conducted a systematic review and meta-analysis of data from controlled studies to study the impact of stem cell biology and experimental design on learning and memory function following stem cell transplantation in animal models of AD. A total of 58 eligible controlled studies were included by searching PubMed, EMBASE, and Web of Science up to April 13, 2015. Meta-analysis showed that stem cell transplantation could promote both learning and memory recovery. Stratified meta-analysis was used to explore the influence of the potential factors on the estimated effect size, and meta-regression analyses were undertaken to explore the sources of heterogeneity for learning and memory function. Publication bias was assessed using funnel plots and Egger’s test. The present review reinforces the evidence supporting stem cell transplantation in experimental AD. However, it highlights areas that require well-designed and well-reported animal studies.

Highlights

  • Approach to treat various diseases, including AD8

  • Stem cells represent a strong candidate for treating Alzheimer’s disease (AD) in animal models, further studies are needed to determine the appropriate conditions to improve the therapeutic effects on AD, such as the ideal type of stem cell, the best source from which to harvest those stem cells for implantation, the number of cells needed, and the site of transplantation of the implanted cells

  • The aims of the current study were to (1) identify all animal experiments describing the efficacy of stem cell-based therapies in models of AD, (2) systematically review the literature describing the effect of stem cell-based therapies on cognitive impairment in animal models of AD, (3) perform a meta-analysis using the DerSimonian and Laird random effects model, (4) provide empirical evidence of the biological factors associated with greater efficacy, and (5) provide an assessment of the presence and impact of possible publication bias

Read more

Summary

Introduction

Approach to treat various diseases, including AD8. There is considerable preclinical literature on the possible benefits of stem cell transplantation against AD. Stem cell transplantation could lead to improvement in cognitive and memory performances and increased neuronal survival as a result of decreases in β -amyloid plaques, neurofibrillary tangles, neurodegeneration, and microglia activation in animal models of AD9–12. It has been demonstrated that human umbilical cord blood-derived mesenchymal stem cell (hUCB-MSCs) transplantation could rescue the impaired memory function in AD mice by reducing apoptosis and modulating oxidative stress[14]. The aims of the current study were to (1) identify all animal experiments describing the efficacy of stem cell-based therapies in models of AD, (2) systematically review the literature describing the effect of stem cell-based therapies on cognitive impairment in animal models of AD, (3) perform a meta-analysis using the DerSimonian and Laird random effects model, (4) provide empirical evidence of the biological factors associated with greater efficacy, and (5) provide an assessment of the presence and impact of possible publication bias

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.