Abstract

The rigid-rod-like poly(p-phenylene terephthalamide) (PPTA), as the raw material of aramid 1414, has the characteristics of high modulus and hydrophilicity. The flat sheet poly(vinylidene fluoride) (PVDF)/PPTA blend separation membranes with improved hydrophilicity and enhanced modulus have been successfully prepared using in situ polycondensation method in our previous study. In this study, PPTA/PVDF hollow fiber blend separation membranes with enhanced hydrophilicity and mechanical strength were fabricated through the dry–wet spinning technique. Monomers of PPTA were polymerized in the PVDF solution, and the polymerization system was directly used as the spinning solution to fabricate the hollow fiber blend membrane. The effects of spinning conditions including the air-gap distance; the composition of core fluid; and composition of coagulation bath on the structure and properties including the separation properties, surface hydrophilicity, and mechanical properties of PPTA/PVDF hollow fiber blend membranes were well investigated. Membrane surface and cross-sectional morphologies were observed through scanning electron microscope. The enhancements of these spinning conditions weakened the phase separation process as a result of the formation of a small pore structure. The pore size distribution, water flux, and solute rejection varied accordingly. Different spinning conditions have different effects on the mechanical and hydrophilic properties of the hollow fiber blend membranes. Compared with pure PVDF hollow fiber membrane, blend membranes fabricated under different spinning conditions exhibited enhanced surface hydrophilicity and tensile properties. Finally, the change rates of the pure water flux and the solute rejection with different spinning conditions were calculated to further analyze and compare the statistically significant effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.