Abstract

We tested the hypothesis that soil texture and nitrogen (N) fertilisation are the primary factors regulating the N cycle and soil bacterial community structure. The response of soil bacterial communities to N fertilisation in different textured soils might help in identifying the specific underlying mechanism and hence management of N fertiliser application in fields. We examined how N fertiliser accumulates in flue-cured tobacco and influences soil bacterial community structure in different textured soils. We conducted plot and micro-plot experimental measurements of N content in soil and tobacco samples using the KNO315N isotope technique. Soil bacterial community structure was determined using high-throughput sequencing of 16S rRNA. Nitrogen absorption and utilisation by tobacco plants were highest in sandy loam soils, followed by loam soil and clay loam. The ability of clay loam to supply N was weak during the plant growth period. Absence of fertilisation could reduce bacterial abundance in soils to various degrees. Bacterial diversity was higher in sandy loam soil than in loam soil and clay loam. Soil texture and N fertilisation significantly affected soil bacterial community structure and diversity. Proteobacteria, Acidobacteria, Firmicutes, Bacteroidetes, Actinobacteria, and Chloroflexi were the dominant bacterial phyla, while Bacillus, Nitrobacter, Nitrosospira, Nitrospira, and Rhizobium were the primary N transformation bacteria at the genus level in all treatments. However, relative abundances differed with N fertiliser application, which could lead to differential N availability and N use efficiency of tobacco among soil types. We conclude that both soil texture and N fertilisation influence N accumulation and distribution in flue-cured tobacco and thus regulate soil bacterial communities. N fertiliser application in sandy loam soil should be strictly controlled for its higher N use efficiency, soil bacterial abundance, and diversity.

Highlights

  • We tested the hypothesis that soil texture and nitrogen (N) fertilisation are the primary factors regulating the N cycle and soil bacterial community structure

  • Nitrogen gradually increased in loam soil, clay loam, and sandy loam soils with plant growth (Fig. 1), attaining a maximum at the mature-plant stage(2.10 g/plant, 1.43 g/plant, and 2.90 g/ plant, respectively)

  • Nitrogen accumulation was lower in plants grown in clay loam than in plants grown in loam soil and sandy loam during the entire growth period, indicating that the N supply capacity of clay loam was relatively weak, and tobacco plants grown in this soil had the lowest levels of N uptake and utilisation

Read more

Summary

Introduction

We tested the hypothesis that soil texture and nitrogen (N) fertilisation are the primary factors regulating the N cycle and soil bacterial community structure. We examined how N fertiliser accumulates in flue-cured tobacco and influences soil bacterial community structure in different textured soils. Relative abundances differed with N fertiliser application, which could lead to differential N availability and N use efficiency of tobacco among soil types. We conclude that both soil texture and N fertilisation influence N accumulation and distribution in flue-cured tobacco and regulate soil bacterial communities. N fertiliser application in sandy loam soil should be strictly controlled for its higher N use efficiency, soil bacterial abundance, and diversity. The objective of our study was to provide further insight into how soil communities respond to N fertilisers

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.