Abstract

Abandoned chemical smelting sites containing toxic substances can seriously threaten and pose a risk to the surrounding ecological environment. Soil samples were collected from different depths (0 to 13 m) and analyzed for metal(loid)s content and fractionation, as well as microbial activities. The potential ecological risk indices for the different soil depths (ordered from high to low) were: 1 m (D-1) > surface (S-0) > 5 m (D-5) > 13 m (D-13) > 9 m (D-9), ranging between 1840.65–13,089.62, and representing extremely high environmental risks, of which Cd (and probably not arsenic) contributed to the highest environmental risk. A modified combined pollution risk index (MCR) combining total content and mobile proportion of metal(loid)s, and relative toxicities, was used to evaluate the degree of contamination and potential environmental risks. For the near-surface samples (S-0 and D-1 layers), the MCR considered that As, Cd, Pb, Sb, and Zn achieved high and alarming degrees of contamination, whereas Fe, Mn, and Ti were negligible or low to moderate pollution degrees. Combined microcalorimetry and enzymatic activity measurements of contaminated soil samples were used to assess the microbial metabolic activity characteristics. Correlation analysis elucidated the relationship between metal(loid)s exchangeable fraction or content and microbial activity characteristics (p < 0.05). The microbial metabolic activity in the D-1 layer was low presumably due to heavy metal stress. Enzyme activity indicators and microcalorimetric growth rate (k) measurements were considered sensitive indicators to reflect the soil microbial activities in abandoned chemical smelting sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.