Abstract

AbstractThe thermal infrared (TIR, or vibrational) emission spectra of a suite of synthetic Mg-Fe olivines exhibit notable differences from their natural igneous counterparts in terms of their band shapes, relative depths, and reduced shifts in some band positions with Mg-Fe solid solution. Comparable reflectance spectra acquired from olivine-dominated matrices and fusion crusts of some carbonaceous chondrite meteorites exhibit similar deviations. Here we show that these unusual spectral characteristics are consistent with crystallite sizes much smaller than the resolution limit of infrared light. We hypothesize that these small crystallites denote abbreviated crystal growth and also may be linked to the size of nucleation sites. Other silicates and non-silicates, such as carbonates, exhibit similar spectral behaviors. Because the spectra of mineral separates are commonly used in the modeling and analysis of comparable bulk rock, meteorite, and remote sensing data, understanding these spectral variations is important to correctly identifying the minerals and interpreting the origin and/or secondary processing histories of natural materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.