Abstract

The recent development of anatomically derived high-resolution voxel-based models of the human body suitable for electromagnetic modelling, and of effective methods for computing the associated induction, has resulted in numerical estimates of organ-specific dosimetry for human exposure to low-frequency magnetic fields. However, these estimates have used an isotropic conductivity model for all body components. More realistic estimates should account for the anisotropy of certain tissues, particularly skeletal muscle. In this work, high-resolution finite-difference computations of induced fields are used to estimate the effects of several extremal realizations of skeletal muscle anisotropy on field levels in various organs. It is shown that, under the present assumptions (anisotropy ratios up to 3.5:1), the resulting dosimetric values can vary by factors of between two or three for tissues other than muscle and up to 5.4 for muscle, despite the unchanged nature of the conductivity model used for all other body components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.