Abstract

Continuing nitrogen (N) deposition has a wide-ranging impact on terrestrial ecosystems. To test the hypothesis that, under N deposition, bacterial communities could suffer a negative impact, and in a relatively short timeframe, an experiment was carried out for a year in an urban area featuring a cover of Bermuda grass (Cynodon dactylon) and simulating environmental N deposition. NH4NO3 was added as external N source, with four dosages (N0 = 0 kg N ha−2 y−1, N1 = 50 kg N ha−2 y−1, N2 = 100 kg N ha−2 y−1, N3 = 150 kg N ha−2 y−1). We analyzed the bacterial community composition after soil DNA extraction through the pyrosequencing of the 16S rRNA gene amplicons. N deposition resulted in soil bacterial community changes at a clear dosage-dependent rate. Soil bacterial diversity and evenness showed a clear trend of time-dependent decline under repeated N application. Ammonium nitrogen enrichment, either directly or in relation to pH decrease, resulted in the main environmental factor related to the shift of taxa proportions within the urban green space soil bacterial community and qualified as a putative important driver of bacterial diversity abatement. Such an impact on soil life induced by N deposition may pose a serious threat to urban soil ecosystem stability and surrounding areas.

Highlights

  • Increasing nitrogen (N) deposition caused by industrialization and anthropogenic activities has become an ecological problem that attracted worldwide attention [1,2,3]

  • To clarify the global interactions between urban soils and their inhabiting microbes, we deemed necessary to understand the specific ones occurring between urban green space soil and hosted bacteria, in order to seize the effects of N enrichment on the whole urban ecosystem functioning

  • The results of this study indicate that the higher deposition or accumulation of N in the urban green space deeply affects patterns of bacterial diversity and community structure

Read more

Summary

Introduction

Increasing nitrogen (N) deposition caused by industrialization and anthropogenic activities has become an ecological problem that attracted worldwide attention [1,2,3]. Sustained N deposition has a wide-ranging impact on terrestrial ecosystems [6], which can cause soil acidification, reduction in biological functions, and diversity [4,7]. Urbanization can alter the abiotic and biotic soil environment through several means, including atmospheric deposition, urban heat island effect, and invasion of exotic species, which may have contrasting effects on microbial activity and function [8]. Heavy traffic, industrial, and agricultural impacts can cause high N emissions in urban areas [9]. The sources of N falling out on urban are complex

Methods
Findings
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.