Abstract

Objective To explore the effects of shear stress on morphology, adhesion and proliferation of human umbilical cord blood mesenchymal stem cells(hUC-MSCs). Methods The hUC-MSCs were cultured in vitro until confluence and then placed in a flow system.The cells were subjected to different shear stress (1, 2, 3, 4 dye/cm2) for 2 hours and 6 hours, and no shear stress treatment cells served as a static control.The morphological changes of hUC-MSCs in different groups were analyzed by phase contrast microscopy and immunofluorescence.The mRNA expression levels of intercellular adhesion molecule-1 (ICAM-1) and Ki67 were detected by real-time PCR. Results Compared with the static control group, the hUC-MSCs cells were arranged in the direction of fluid after treated with shear stress.The immunofluorescence results showed that the cytoskeletal protein F-actin filaments was prolonged after shear stress.The cytoskeleton was further elongated in the 2 dye/cm2 for 6 hours group when compared with 2 dye/cm2 for 2 hours group, and the cytoskeleton was loosened when time extended to 6 hours.Real-time PCR results showed that the relative expressions of ICAM-1 mRNA and Ki67 mRNA in the static control group and different gradient shear stress groups were significantly different, with significant differences among them (F=17.141, P=0.000; F=11.336, P=0.001). The relative expression of ICAM-1 mRNA in the 1, 2, 3, 4 dye/cm2 shear stress group was 2.74±0.32, 9.77±1.19, 6.70±0.92 and 5.69±0.72, respectively, which was significantly higher than 1.00±0.28 in the static control group, with significant differences between them (all at P<0.05). The relative expression of Ki67 mRNA in the 3 dye/cm2 and 4 dye/cm2 shear stress group was 0.39±0.09 and 0.04±0.02, respectively, which was significantly lower than 1.00±0.24 in the static control group, with statistically significant differences between them (both at P<0.05). Conclusions After treated with fluid shear stress, hUC-MSCs are arranged in the direction of fluid.Shear stress can promote the adhesion of hUC-MSCs.As the increase of shear stress intensity, cell proliferation is inhibited. Key words: Fluid shear stress; Human umbilical cord blood mesenchymal stem cells; Corneal endothelial cells; Intercellular adhesion molecule-1

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.