Abstract

The effects of self-mixing interference on gain-coupled (GC) distributed-feedback (DFB) lasers are analyzed. From coupled-wave theory, the oscillation frequency and threshold gain variations are theoretically deduced. The influences on self-mixing from the coupling length coefficient, the linewidth enhancement factor of the GC DFB laser, and the reflection coefficient of the external reflector are discussed along with numerical analysis and are compared with the effects of self-mixing interference of lambda/4 phase-shifted DFB lasers and Fabry-Perot (F-P) lasers. Our results show that high-accuracy self-mixing sensors can be obtained with GC DFB lasers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.