Abstract

Kepler’s observations show most of the exoplanets are super-Earths. The formation of a super-Earth is generally related to the atmospheric mass loss that is crucial in the planetary structure and evolution. The shock driven by the giant impact will heat the planet, resulting in the atmosphere escape. We focus on whether self-gravity changes the efficiency of mass loss. Without self-gravity, if the impactor mass is comparable to the envelope mass, there is a significant mass-loss. The radiative-convective boundary will shift inward by self-gravity. As the temperature and envelope mass increase, the situation becomes more prominent, resulting in a heavier envelope. Therefore, the impactor mass will increase to motivate the significant mass loss, as the self-gravity is included. With the increase of envelope mass, the self-gravity is particularly important.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.