Abstract

Na+/K+–ATPase (NKA) is a primary active pump provides the driving force for ion-transporting systems in the osmoregulatory tissues of teleosts. Therefore, modulation of NKA expression or activity and its regulatory subunit, FXYD protein, is essential for teleosts in salinity adaptation. To understand the mechanisms for modulation of NKA in catadromous fishes, NKA expression and activity, cloning and mRNA expression of FXYD11 (AjFXYD11) were examined in Japanese eel (Anguilla japonica) exposed to fresh water (FW) and seawater (SW; 35‰). Expression and activity of NKA as well as mRNA expression of AjFXYD11 in gills were elevated in SW eel compared to FW eel. Conversely, NKA responses in eel kidneys were higher in FW group than SW group, whereas no significant difference was found in renal AjFXYD11 expression between the two groups. Comparison of NKA activity and AjFXYD11 expression between two osmoregulatory tissues suggested that AjFXYD11 plays a specific, functional role in gills. However, since cortisol plays an important role for regulation of ion transport in teleost SW acclimation and gill AjFXYD11 expression was elevated in SW eel, the organ culture approach was used to study the effect of cortisol on gill AjFXYD11 mRNA expression. Our results revealed that cortisol treatment increased the levels of gill AjFXYD11 transcripts. This finding suggested that cortisol could be involved in the regulation of NKA by altering AjFXYD11 expression during the process of SW acclimation in A. japonica. Taken together, the differential expression of branchial and renal NKA and AjFXYD11 implicated their roles in the osmotic homeostasis of Japanese eel exposed to environments of different salinities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.