Abstract
The effects of the Reynolds and Prandtl numbers on the rate of heat transfer from a square cylinder are investigated numerically in the unsteady two-dimensional periodic flow regime, for the range of conditions 60 ⩽ Re ⩽ 160 and 0.7 ⩽ Pr ⩽ 50 (the maximum value of Peclet number being 4000). A semi-explicit finite volume method has been used on a non-uniform collocated grid arrangement to solve the governing equations. Using the present numerical results, simple heat transfer correlations are obtained for the constant temperature and constant heat flux conditions on the solid square cylinder. In addition, the variation of the time averaged local Nusselt number on the each face of the obstacle and representative isotherm plots are presented to elucidate the role of Prandtl number on heat transfer in the unsteady flow regime.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.