Abstract

In this Letter we study the Aharonov–Bohm problem for a spin-1/2 particle in the quantum deformed framework generated by the κ-Poincaré–Hopf algebra. We consider the nonrelativistic limit of the κ-deformed Dirac equation and use the spin-dependent term to impose an upper bound on the magnitude of the deformation parameter ε. By using the self-adjoint extension approach, we examine the scattering and bound state scenarios. After obtaining the scattering phase shift and the S-matrix, the bound states energies are obtained by analyzing the pole structure of the latter. Using a recently developed general regularization prescription [Phys. Rev. D. 85 (2012) 041701(R)], the self-adjoint extension parameter is determined in terms of the physics of the problem. For last, we analyze the problem of helicity conservation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.