Abstract

Labyrinth seals represent an important flow element in the sealing equipment of modern turbomachinery industries. The straight-through and stepped labyrinth seal are widely used in modern steam turbine due to their comparable simple structure and low manufactured costs. The influence of pressure ratio and fin pitch on the leakage flow characteristics of the straight-through and stepped labyrinth seals is numerically determined. The pressure ratio is defined as the outlet static pressure divided by the inlet total pressure. The fin pitch varied in the fixed axial distance of the labyrinth seal. The geometries investigated represent designs of the straight-through and stepped labyrinth seal typical for modern steam turbines. The leakage flow fields in the high rotating straight-through and stepped labyrinth seals are obtained by the Reynolds-Averaged Navier-Stokes solution using the commercial software FLUENT with the fixed seal clearance and fins geometrical structure. The effect of the rotational axis is also taken into account in numerical computations. Numerical simulations covered a range of pressure ratio and fin pitch for the straight-through and stepped labyrinth seals. Dimensionless discharge coefficients, describing the sealing performance, are calculated from the simulation results. The numerical results show that pressure ratio and fin pitch both affects the sealing performance with the fixed seal clearance and fin geometrical structure. The leakage flow rate decreases with the decreasing fin pitch for both the straight-through and stepped labyrinth seal at the fixed pressure ratio. Furthermore, the leakage flow rate decreases with the increasing pressure ratio at the fixed fin pitch for two kinds of labyrinth seals in the present study. This research provides technical support for improved design of labyrinth seals in turbomachinery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.