Abstract

The synthesis of TiO 2 nanoparticles is investigated experimentally and computationally in low-pressure H 2/O 2/N 2 burner-stabilized flat stagnation flames, using titanium tetra-iso-propoxide as precursor. The flow field is modeled with detailed chemical kinetics and transport, and is compared with measurements using laser-induced fluorescence to map gas-phase temperature and OH-radical species concentration. A sectional model, coupled with the simulated flow field and flame structure, is employed to model particle growth dynamics, computing aggregate particle size distribution, geometric standard deviation, and average primary particle size. The computations are compared with the experiments, for which in situ characterization of the nanoparticles in the flow field is accomplished by a low-pressure aerosol sampling system connected to a nano-scanning mobility particle sizer. Effects of operating pressure and precursor-loading rate on particle growth are examined experimentally and are compared with computational modeling. Different from other works, temperature profiles, rather than mass flow rate, are fixed using strategic dilution to base the comparisons. Higher pressures produce larger aggregate particles, but also smaller primary particles, due to longer residence times, as seen in both the experiments and computations. For higher precursor-loading rates, aggregate particle size is larger (for both experiments and computations), while primary particle size remains constant for the experiments and decreases slightly for the computations in the corresponding range.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.