Abstract

This work investigates whether inclusion of the low-frequency components of heart sounds can increase the accuracy, sensitivity and specificity of diagnosis of cardiovascular disorders. We standardized the measurement method to minimize changes in signal characteristics. We used the Continuous Wavelet Transform to analyze changing frequency characteristics over time and to allocate frequencies appropriately between the low-frequency and audible frequency bands. We used a Convolutional Neural Network (CNN) and deep-learning (DL) for image classification, and a CNN equipped with long short-term memory to enable sequential feature extraction. The accuracy of the learning model was validated using the PhysioNet 2016 CinC dataset, then we used our collected dataset to show that incorporating low-frequency components in the dataset increased the DL model's accuracy by 2% and sensitivity by 4%. Furthermore, the LSTM layer was 0.8% more accurate than the dense layer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.