Abstract
The spread of distributed generation systems has reinforced concerns and requirements on grid-tied power converters. The synchronization with the utility voltage vector is a major concern. In the literature, algorithms based on Phase Locked Loops are extensively presented. In spite of adequate performances under ideal and balanced grid conditions, under grid faults great inaccuracies arise. Shortcomings are overcome by advanced algorithms at the expenses of the complexity and computational cost. In this paper, grid synchronization algorithms are addressed. A solution is proposed by introducing a new post-filter stage in a Decoupled Double Synchronous Reference Frame not affecting, at the same time, the complexity of implementation, the detection time and damping of the conventional DDSRF solution. The post-filtering stage design criteria are described based on a mathematical derivation of the phase error in a conventional DDSRF algorithm under distorted grid utility. A comparison of system performances with the conventional DDSRF algorithm is carried out under distorted, balanced and unbalanced utility conditions, validating the benefits brought by the proposed solution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.