Abstract

The effects of nanoscale pores on the strength and ductility of porous Cu 46Zr 54 metallic glasses during nanoindentation and uniaxial compression tests are modelled and investigated using molecular dynamics (MD) simulations. In the MD simulations, atomistic amorphous samples were digitally prepared through fast quenching from the liquid states of copper and zirconium alloy. In both of the nanoindentation and uniaxial compression simulations, shear transformation zones and shear bands are observed through the local deviatoric shear strains in the samples. The results show that the existence of pores causes strain concentrations and greatly promotes the initialization and propagation of shear bands. Importantly, only pores reaching critical size can effectively facilitate the formation of multiple shear bands. It is also observed that hardening occurs through pore annihilation and the shear band stops in porous metallic glasses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.