Abstract

The evolutionary dynamics of neutral alleles under the Wright–Fisher model are well understood. Similarly, the effect of population turnover on neutral genetic diversity in a metapopulation has attracted recent attention in theoretical studies. Here we present the results of computer simulations of a simple model that considers the effects of finite population size and metapopulation dynamics on a mating-system polymorphism involving selfing and outcrossing morphs. The details of the model are based on empirical data from dimorphic populations of the annual plant Eichhornia paniculata, but the results are also of relevance to species with density-dependent selfing rates in general. In our model, the prior selfing rate is determined by two alleles segregating at a single diploid locus. After prior selfing occurs, some remaining ovules are selfed through competing self-fertilisation in finite populations as a result of random mating among gametes. Fitness differences between the mating-system morphs were determined by inbreeding depression and pollen discounting in a context-dependent manner. Simulation results showed evidence of frequency dependence in the action of pollen discounting and inbreeding depression in finite populations. In particular, as a result of selfing in outcrossers through random mating among gametes, selfers experienced a “fixation bias” through drift, even when the mating-system locus was selectively neutral. In a metapopulation, high colony turnover generally favoured the fixation of the outcrossing morph, because inbreeding depression reduced opportunities for colony establishment by selfers through seed dispersal. Our results thus demonstrate that population size and metapopulation processes can lead to evolutionary dynamics involving pollen and seed dispersal that are not predicted for large populations with stable demography.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.