Abstract

The nitrogen incorporated nanocrystalline diamond (NCD) films were grown on n-silicon (100) substrates by microwave plasma enhanced chemical vapor deposition (MPECVD) using CH 4/Ar/N 2 gas chemistry. The effect of surface passivation on the properties of NCD films was investigated by hydrogen and nitrogen-plasma treatments. The crystallinity of the NCD films reduced due to the damage induced by the plasma treatments. From the crystallographic data, it was observed that the intensity of (111) peak of the diamond lattice reduced after the films were exposed to the nitrogen plasma. From Raman spectra, it was observed that the relative intensity of the features associated with the transpolyacetylene (TPA) states decreased after hydrogen-plasma treatment, while such change was not observed after nitrogen-plasma treatment. The hydrogen-plasma treatment has reduced the sp 2 /sp 3 ratio due to preferential etching of the graphitic carbon, while this ratio remained same in both as-grown and nitrogen-plasma treated films. The electrical contacts of the as-grown films changed from ohmic to near Schottky after the plasma treatment. The electrical conductivity reduced from ~ 84 ohm – 1 cm − 1 (as-grown) to ~ 10 ohm – 1 cm − 1 after hydrogen-plasma treatment, while the change in the conductivity was insignificant after nitrogen-plasma treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.