Abstract

High-head pumped storage power stations face serious problems related to the transient process, especially in the area of delayed load rejection in stations with annular piping layouts. The controlled pressures are adversely affected, which leads to many problems in the engineering design phase. In this study, we investigated this condition through theoretical analysis, numerical simulation, and actual engineering practice. We concluded that the root cause of the pressure issues is the flow switching resulted from the non-synchronous changes in pressure between each branch pipe. Moreover, we examined the impact of the diameters of the upstream main pipe and branch pipe on the controlled pressures and determined that the diameter of the branch pipe has a major influence on the pressures as it changes the flow switching rate. A similar investigation was conducted for downstream pipes. Our conclusions can be applied to actual engineering practice for high-head pumped storage power stations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.