Abstract
Neurons from rat superior cervical ganglia were grown in coculture with pineal cells. Action potentials of neurons in cocultures were 25% longer and were 25% greater in amplitude than those recorded from neurons grown in the presence of ganglionic nonneuronal cells alone. Neurons showed an increase in action potential duration with increasing time in culture. This may have been related to the recovery of nonneuronal cell populations after an initial exposure to the antimitotic agent Ara-C. In cultures not initially exposed to Ara-C, a subsequent exposure after 7 days in culture resulted in a shortening of the action-potential duration. Neuronal cultures were exposed to gel slabs containing the pineal indolamines, serotonin, N-acetylserotonin, and melatonin. Serotonin and N-acetylserotonin showed no effect on the neuronal action potentials at the concentrations tested. Melatonin caused an increase in action-potential duration that was associated not with an increase in action-potential amplitude, but with a decrease in action-potential rise rates. The effects of long-term exposure in melatonin appeared to be reversible in some cells but not in all. Short-term effects of melatonin were observed in older cultures and in younger cultures after the cells were stimulated repeatedly. Older cultures also had higher levels of spontaneous activity. The dependence of the short-term effects of melatonin on electrical activity may suggest a role for melatonin as a neuromodulator.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.