Abstract
Phenolic compounds have emerged in recent years as an option to face insulin resistance and diabetes. The central aim of this study was: (1) to demonstrate that physiological doses of resveratrol (RSV) or quercetin (Q) can influence glucose metabolism in human myotubes, (2) to establish whether AMP-activated protein kinase (AMPK) and protein kinase B –PKB- (Akt) pathways are involved in this effect. In addition, the effects of these polyphenols on mitochondrial biogenesis and fatty acid oxidation were analysed. Myotubes from healthy donors were cultured for 24 h with either 0.1 μM of RSV or with 10 μM of Q. Glucose metabolism, such as glycogen synthesis, glucose oxidation, and lactate production, were measured with D[U-14C]glucose. β-oxidation using [1–14C]palmitate as well as the expression of key metabolic genes and proteins by Real Time PCR and Western blot were also assessed. Although RSV and Q increased pgc1α expression, they did not significantly change either glucose oxidation or β-oxidation. Q increased AMPK, insulin receptor substrate 1 (IRS-1), and AS160 phosphorylation in basal conditions and glycogen synthase kinase 3 (GSK3β) in insulin-stimulated conditions. RSV tended to increase the phosphorylation rates of AMPK and GSK3β. Both of the polyphenols increased insulin-stimulated glycogen synthesis and reduced lactate production in human myotubes. Thus, physiological doses of RSV or Q may exhibit anti-diabetic actions in human myotubes.
Highlights
Introduction published maps and institutional affilInsulin resistance and diabetes currently represent pandemic diseases at a global level.In 2016, diabetes caused an estimated 1.6 million deaths, and high blood glucose levels were responsible for 2.2 million deaths [1]
It contributes to 85% of the whole body glucose uptake, which is essential in avoiding insulin resistance development [2]
Only pgc1α expression increased after cell treatment with either RSV or Q (Figure 1a)
Summary
Insulin resistance and diabetes currently represent pandemic diseases at a global level. In 2016, diabetes caused an estimated 1.6 million deaths, and high blood glucose levels were responsible for 2.2 million deaths [1]. For this reason, great effort is being made to find new strategies in the fight against this disease. Skeletal muscle is the main tissue that is involved in glycaemic control in the postprandial state. It contributes to 85% of the whole body glucose uptake, which is essential in avoiding insulin resistance development [2].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.