Abstract

Outdoor thermal comfort (TC) is an important parameter in assessing the value and health utility of a recreational space. Given the public health significance of child heat illness, the ability to model children's heat balance and TC during activity has received little attention. The current pilot study tests the performance of an outdoor human heat balance model on children playing in warm/hot outdoor environments in sun and shade. Fourteen children aged 9–13 participated in the 8-day study in Texas in spring 2016, performing physical activity while wearing heartrate monitors and completing thermal perception surveys (e.g., actual thermal sensation (ATS)). Surveys were compared to predicted thermal sensation (PTS) based on principles of human-environment heat exchange using personal data and a suite of on-site microclimate information. Results demonstrate the model to significantly predict ATS votes (Spearman's rho = 0.504). Subjective preferred change was also significantly correlated to modeled PTS (rho = −0.607). Radiation, air temperature, windspeed, and level of tiredness were significant predictors of ATS. Finally, the mean human energy balance was significantly lower in the shade (−168 W m-2), thus lowering heat stress potential, with the model predicting ATS with little-to-no error (0.2 and 0.0 scale error units in sun and shade, respectively). This study demonstrates an ability to estimate a child's heat balance while accounting for changes in major heat contributors (e.g., radiation, metabolism), and is the first study to evaluate TC of children during activity in outdoor built environments. New insights of heat perception may aid in recognition of often under-recognized heat stress.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.